wersja mobilna
Online: 768 Wtorek, 2017.03.28

Technika

Systemy bezpieczeństwa dla układów maszynowych

piątek, 19 grudnia 2014 12:02

Budowa systemu zabezpieczeń, który sprawdza się w praktyce i zapewnia wystarczający poziom bezpieczeństwa, wymaga doświadczenia w wielu obszarach. Podstawą jest zaprojektowanie funkcji bezpieczeństwa dla systemu, który będzie gwarantował odpowiedni poziom niezawodności. W tej kwestii z pomocą przychodzi norma EN ISO 13849-1. W niniejszym artykule pragniemy przybliżyć analizę prostych układów maszynowych zabezpieczonych komponentami bezpieczeństwa ABB Jokab Safety.

PRZYKŁAD 1: SYSTEM BEZPIECZEŃSTWA Z WYKORZYSTANIEM PRZEKAŹNIKA RT9

Krok 1 - Ocena ryzyka
Żywność do zapakowania jest ładowana do klatki ręcznie tylnymi drzwiami. Następnie w zasobniku przygotowywana jest partia dla przenośnika pakującego. Klatka jest resetowana i restartowana. Maszyna pakująca z przenośnikiem taśmowym działa tylko wtedy, gdy zarówno jedne, jak i drugie drzwi są zamknięte i gdy system zabezpieczający został zresetowany.

Podczas szacowania ryzyka ustalono, że maszyna ma pracować w trybie trójzmianowym (8 godzin na zmianę), 365 dni w roku. Zakłada się, że zaburzenia w pracy maszyny udaje się usunąć w czasie poniżej jednej minuty w strefie zagrożenia. Może to mieć miejsce dwa razy w ciągu godziny (F2). Nieoczekiwane uruchomienie nie może być przyczyną poważnych obrażeń, co najwyżej niewielkich, uleczalnych urazów (S1). Operator z założenia nie ma możliwości uniknięcia obrażeń, gdyż maszyna porusza się szybko (P2).

Liczba cykli dla funkcji bezpieczeństwa = 365 dni/rok • (3•8) godzin/ dzień • 2 cykle/godzinę = 17,520 cykli/rok.

Ocena dla funkcji bezpieczeństwa wymaganej do uzyskania dostępu do maszyny wynosi PLr = c (S1, F2, P2). Oprócz tej funkcji bezpieczeństwa, konieczna jest funkcja zatrzymania awaryjnego. Jest ona także oceniana jako PLr = c.

Krok 2 - Redukcja ryzyka
Jako zabezpieczenie wybrano drzwi blokowane z wyłącznikiem ryglującym MKey8. Czas dobiegu jest na tyle krótki, że dojdzie do zatrzymania niebezpiecznego ruchu, zanim operator będzie mógł uzyskać dostęp do maszyny. Wyłącznik awaryjny jest umiejscowiony w zasięgu ręki, po obu stronach klatki w pobliżu zamkniętych drzwi.

Uwaga! Oceny należy dokonać dla każdej funkcji bezpieczeństwa.

PRZYKŁAD 2: CELA ROBOTA O WYSOKIM STOPNIU RYZYKA

Krok 1 - Ocena ryzyka
Przedmioty obrabiane są podawane do urządzenia i transportowane na zewnątrz w przypadku bezbłędnego przejścia testu. Za pomocą robota elementy są wprowadzane do maszyny w celu przetestowania. Nieautoryzowane elementy są umieszczane obok robota, w celu dalszej obróbki ręcznej.

Praca, którą należy wykonać w celi robota polega na eliminacji zakłóceń w pracy sprzętu testującego i przenośnika taśmowego (mniej więcej raz na godzinę), obróbce końcowej i wyładowaniu ze stanowiska ręcznego (mniej więcej raz na godzinę), zaprogramowaniu korekt (raz na tydzień) i czyszczeniu (raz na tydzień) (F2).

Nieoczekiwane uruchomienie robota może być przyczyną poważnych obrażeń (S2). Operator z założenia nie ma możliwości uniknięcia obrażeń, gdyż robot porusza się szybko (P2). Ocena dla funkcji bezpieczeństwa wymaganej do uzyskania dostępu do maszyny wynosi PLr = e (S2, F2, P2).

Wprowadzona norma ISO 10218-2 dla systemów / cel robotyki określa wymóg PL d dla zastosowanych funkcji bezpieczeństwa (jeżeli analiza ryzyka nie wykazała innego PL). Dla bezpiecznego zatrzymania robota i wejść wyłączników awaryjnych wymagany jest przynajmniej PL d (według normy EN ISO 10218-1). Jednak w tym przypadku ocena ryzyka dała wynik PLr = e.

Krok 2 - Redukcja ryzyka
Jako zabezpieczenie wybrano drzwi blokowane czujnikiem bezkontaktowym Eden. W celu ochrony przed nieprawidłowym wejściem do celi transport materiałów do i z klatki jest zabezpieczony, funkcja mutingu odróżnia materiały od ludzi. Wymaganą funkcją bezpieczeństwa jest także wyłącznik awaryjny. Zasilanie dla wszystkich niebezpiecznych funkcji maszyny musi być odcinane przez wszystkie funkcje bezpieczeństwa.

Rozwiązanie z modułem Vital umożliwia wdrożenie aplikacji robota z jednym sterownikiem do systemów bezpieczeństwa, który nie wymaga konfiguracji ani programowania. Vital umożliwia nadzór do 30 komponentów bezpieczeństwa i uzyskanie PL e.

ABB
new.abb.com/pl

 

zobacz wszystkie Nowe produkty

Komputer embedded o wymiarach 86 x 81 x 33 mm

2017-03-28   |
Komputer embedded o wymiarach 86 x 81 x 33 mm

ADLEPC-1500 to ultraminiaturowy komputer embedded PC o wymiarach 86 x 81 x 33 mm, którego parametry pozwalają na zastosowania w pojazdach zdalnie sterowanych (UAV, UUV), robotyce, systemach zarządzania ruchem drogowym, przemysłowych systemach sterowania, kamerach oraz innych aplikacjach pracujących w wymagających warunkach środowiskowych.
czytaj więcej

Kurtyna pomiarowa z IO-Link

2017-03-28   | BALLUFF Sp. z o.o.
Kurtyna pomiarowa z IO-Link

Kurtyna pomiarowa z interfejsem IO-Link stosowana może być do identyfikacji różnych obiektów podczas produkcji, pakowania lub kontroli jakości. Pozwala na pomiar wielu wielkości, takich jak średnica, położenie obiektu, szerokość szczeliny, położenie szczeliny lub krawędzi. Ma również dodatkowe tryby pracy, w tym porównanie wartości nominalnych i rzeczywistych, które mogą być stosowane w tym samym czasie.
czytaj więcej

Nowy numer APA