wersja mobilna
Online: 521 Poniedziałek, 2017.10.23

Temat miesiąca

Przemysł 4.0 - technologie przyszłości - Strona 5

piątek, 21 kwietnia 2017 08:59

Przemysł 4.0 (Industry 4.0) to termin, który od kilku lat robi zawrotną karierę w mediach oraz na spotkaniach branżowych, a używa się go jako synonimu zbioru nowych technologii, które mają zapoczątkować kolejną wielką zmianę w przemyśle. W artykule przedstawiamy najważniejsze z nich, zaś we wstępie wyjaśniamy, co ma być rezultatem ich połączenia.

Spis treści » Wywiad z Tomaszem Hajdukiem z firmy Siemens
» Industrial IoT
» Roboty autonomiczne i współpracujące
» Cyberbezpieczeństro w przemyśle
» Wywiad z Tomaszem Michalskim z firmy Pepperl+Fuchs
» Wirtualna i rozszerzona rzeczywistość
» Drukowanie przyrostowe
» Podsumowanie
» Wywiad z Jarosławem Gracelem z firmy ASTOR
» Pokaż wszystko
Cyberbezpieczeństwo w przemyśle

W rozdziale dotyczącym Przemysłowego Internetu Rzeczy była mowa o możliwych zagrożeniach, w tym ze strony hakerów. Sprawa jest poważna, bowiem celem takich działań w przypadku IIoT może być na przykład szpiegostwo przemysłowe lub chęć uszkodzenia lub zniszczenia majątku konkurencyjnego zakładu produkcyjnego maszyn - na przykład poprzez ich rozregulowanie, albo innej infrastruktury - np. przez wywołanie wybuchu. Przestępcy mogą też zaatakować, żeby zniszczyć, bądź pogorszyć jakość wyrobów, na przykład przez modyfikację ich receptur.

Do ataków hakerskich na przemysłowe systemy sterowania i automatyki dochodzi już od dawna. Sztandarowy przykład to robak Stuxnet, który został wykryty w 2010 roku. Prawdopodobnie na skutek przeprogramowania przez niego sterowników PLC doszło do awarii w irańskiej elektrowni jądrowej. W 1992 roku pracownik litewskiej elektrowni nuklearnej wprowadził wirusa do systemu sterowania w jednym z reaktorów.

Z kolei w 2013 roku irańscy hakerzy włamali się do komputera sterującego pracą zapory pod Nowym Jorkiem, a rok później włamano się do sieci zakładowej firmy, która zarządzała elektrowniami nuklearnymi w Korei Południowej. W 2015 hakerzy spowodowali awarię sieci energetycznej na Ukrainie.

Najsłabszym ogniwem okazuje się przeważnie człowiek. Próbuje się temu zaradzić, kontrolując dostęp do kluczowych zasobów zakładu. Poza tym stosuje się firewalle, szyfrowanie danych, programy antywirusowe i... nie podłącza się systemów sterowania i automatyki do sieci korporacyjnej ani Internetu. To ostatnie przeczy idei IIoT. Jeżeli zaś chodzi o pozostałe metody, to przenikanie się świata cyfrowego z fizycznym na tak ogromną skalę wymusi adekwatne rozszerzenie ich zasięgu.

BEZPIECZEŃSTWO W SIECIACH INDUSTRIAL IOT

Rys. 1. Główne funkcje bezpieczeństwa w sieciach Przemysłowego Internetu Rzeczy

Cyberbezpieczeństwu w kontekście sieci Przemysłowego Internetu Rzeczy poświęca się coraz więcej uwagi. Organizacje, które powstały, żeby popularyzować IIoT, tworzą specjalne grupy robocze zajmujące się tym tematem. Przykład to jednostka wydzielona w obrębie organizacji Industrial Internet Consortium. Wynikiem prac Security Working Group IIC jest dokument pt. Industrial Internet of Things Security Framework. Wśród autorów tego opracowania znaleźli się przedstawiciele m.in. firm Intel, Fujitsu, General Electric, ABB, Belden, Schneider Electric, IBM, Symantec, Microsoft, Oracle oraz Cisco.

Na rysunku 1 przedstawiono najważniejsze funkcje, które należy zrealizować, aby zabezpieczyć sieci Przemysłowego Internetu Rzeczy. Podzielono je na trzy grupy zobrazowane jako warstwy. Najwyższa z nich obejmuje cztery główne funkcje bezpieczeństwa. Jedną z nich jest ochrona punktu końcowego (Endpoint Protection), czyli każdego elementu sieci IIoT przetwarzającego, wysyłającego i odbierającego dane.

Może on być częścią systemu sterowania lub komponentem sieciowym. Przykłady to: sensory, sterowniki PLC, koncentratory sieciowe i serwery w chmurze obliczeniowej. Poziom ochrony, wymagany i możliwy do uzyskania, determinują specyfika oraz ograniczenia sprzętowe albo programowe punktu końcowego. Bezwzględnie powinien on jednak zapewniać dostępność, poufność oraz integralność funkcji danego urządzenia.

OCHRONA PUNKTU KOŃCOWEGO I INNE FUNKCJE BEZPIECZEŃSTWA

W dokumencie Industrial Internet of Things Security Framework wymieniono kilka zabezpieczeń, które obowiązkowo muszą zostać wdrożone dla punktu końcowego. Należy go m.in. chronić przed ingerencją fizyczną, czyli uniemożliwić jego modyfikację albo kradzież i zapewnić tzw. root of trust, który będzie podstawą do uwiarygodnienia dla sprzętu i/albo oprogramowania urządzenia. Ponadto trzeba umożliwić jego unikalną identyfikację i zadbać, by był właściwie skonfigurowany. Konieczna jest kontrola dostępu oraz aktualizacja oprogramowania. Punkt końcowy powinien być także monitorowany pod kątem anomalii, które mogą być oznaką zewnętrznej ingerencji.

Pozostałe trzy funkcje bezpieczeństwa to: zabezpieczenie komunikacji i łączności (Communications and Connectivity Protection), monitoring oraz analiza bezpieczeństwa (security monitoring and analysis) oraz konfiguracja bezpieczeństwa i zarządzanie (Security Configuration & Management). W modelu z rysunku 1 znajdują się warstwy: ochrony danych (Data Protection) i modelu i polityki bezpieczeństwa (Security Model and Policy).

BEZPIECZNA KOMUNIKACJA, MONITORING I ANALIZA

Według Industrial Internet of Things Security Framework w ramach funkcji zabezpieczenia komunikacji i łączności powinno się zaimplementować środki ochronne, które m.in. zapewnią: nienaruszalność fizycznego połączenia (sieci przewodowej, sieci bezprzewodowej), bezpieczeństwo komunikacji pomiędzy punktami końcowymi za pomocą zabezpieczeń kryptograficznych, ochronę przepływu informacji, na przykład przez segmentację, dzięki której do newralgicznych systemów i sieci docierać będą tylko dane dla nich bezpieczne, monitoring sieci pod kątem niepożądanej ingerencji z zewnątrz (inspekcję pakietów, analizę logów sieci) i kontrolę dostępu do sieci.

Jeżeli z kolei chodzi o funkcję monitoringu oraz analizy bezpieczeństwa, to wyodrębniono w niej trzy akcje:

  • monitoring, obejmujący punkty końcowe i komunikację, zdalne logowania i łańcuch dostaw,
  • analizę, której celem jest wykrycie luk w zabezpieczeniach i zagrożeń przez obserwację typowych, dozwolonych operacji w systemie i ich zapamiętywanie oraz wykrywanie działań niedozwolonych,
  • działanie.

To ostatnie obejmuje trzy typy reakcji: zapobieganie atakowi poprzez wykrywanie oznak prób jego dokonania, odpowiedź na atak oraz próbę przywrócenia normalnego stanu systemu po ataku i analizę luk, które wykorzystano do jego przeprowadzenia.

Z pełnym opisem tych i pozostałych funkcji bezpieczeństwa i przykładami ich realizacji można się zapoznać na stronie internetowej http://www.iiconsortium.org/IISF.htm, gdzie został udostępniony dokument Industrial Internet of Things Security Framework.



 

Powiązane artykuły

Polska Platforma Przemysłu 4.0

Komunikacja w Przemyśle 4.0

Przemysłowy Internet Rzeczy - jak wykorzystać jego potencjał?

Technologia RFID na straży bezpieczeństwa - wyłączniki bezpieczeństwa Pizzato z technologią RFID

Automatyzacja centralna czy zdecentralizowana?

Przemysłowy Internet Rzeczy

Industry 4.0 w praktyce

Naścienne obudowy stalowe GL66 dostępne w sklepie internetowym CSI

Pakowanie mięsa szybsze o 400%

Zrobotyzowana paletyzacja z robotem Tower TR1200

IO-Link: USB dla czujników

Grupa Delta - rozwiązania z zakresu zarządzania energią

Ze smartfonem do przemiennika częstotliwości

Koncepcja openROBOTICS i technologia MAPP czynią różnicę w integracji robotów

Maszyna z ARGEE

Wizja, tradycja i niezawodność. 100 lat na świecie i 40 lat w Europie

Relpol SA - reputable European manufacturer of relays

Hannover Messe 2017. Przewodnik targowy / Trade fair guide

Cantoni Group

ASTOR - your trusted automation and robotization partner

Modern production organization - Wonderware MES in LOTOS Asfalt

Advanced robotization of automotive components production in Polmo SA

Jubileuszowa, 70. obecność HARTING-a na Hannover Messe

Zapewnienie bezpieczeństwa procesu i ochrony danych produkcyjnych kluczowym czynnikiem sukcesu Industry 4.0

Linkowe wyłączniki zatrzymania awaryjnego

W pełni zamykane i odporne na wysokie temperatury: e-prowadniki igus typu tuba wytrzymują kontakt z wiórami o temperaturze do 850°C

Optymalizacja procesu zmiany formatu przy zastosowaniu rozwiązań IO-Link firmy Balluff

Procesy pakowania w trybie Przemysłu 4.0

Przemysł 4.0 - dlaczego, po co i jak?

Bezpieczne rozwiązania teleserwisowe dla obrabiarek z obrotowym stołem indeksującym

Relpol SA - znany europejski producent przekaźników

Digitalizacja i praca w sieci. Najlepsze rozwiązania Weidmüller na targach w Hanowerze

Astor Tour 2017 - seminaria dla Inżynierów Przemysłu 4.0

KUKA: jesteśmy gotowi na wyzwania Przemysłu 4.0

Prezentacje firmowe

zobacz wszystkie Nowe produkty

Komputery Automation PC 910 z procesorami Intel Xeon

2017-10-20   | B&R Automatyka Przemysłowa Sp. z o.o.
Komputery Automation PC 910 z procesorami Intel Xeon

Firma B&R oferuje komputery Automation PC 910 w wersjach z procesorem Intel Xeon. Nowa architektura zapewnia nawet 50-procentowy wzrost wydajności w porównaniu do poprzednich procesorów z serii Core i. Nowy, czterordzeniowy procesor Xeon daje komputerom Automation PC 910 moc obliczeniową, która była wcześniej zarezerwowana dla dużych serwerów.
czytaj więcej

Szybki i precyzyjny czujnik wilgotności z interfejsem 4...20 mA

2017-10-20   |
Szybki i precyzyjny czujnik wilgotności z interfejsem 4...20 mA

AquaXact 1688 to szybki i precyzyjny czujnik wilgotności opracowany przez firmę Servomex, zawierający wymienny sensor z tlenku glinu. Mierzy on temperaturę punktu rosy i zawartość H2O w ppm m.in. w komorach rękawicowych, stacjach separacji powietrza, instalacjach przetwarzania gazu ziemnego, przemyśle półprzewodnikowym i farmaceutycznym, produkcji etylenu i wielu innych zastosowaniach.
czytaj więcej

Nowy numer APA