wersja mobilna
Online: 490 Środa, 2016.09.28

Temat miesiąca

Współrzędnościowa technika pomiarowa

piątek, 03 października 2008 13:56

Współrzędnościowa technika pomiarowa to stosunkowo młoda dziedzina pomiarów wielkości geometrycznych. Obecnie przeżywa ona dynamiczny rozwój dzięki możliwości automatyzacji pomiarów, integracji z systemami CAD/CAM oraz zastosowania komputerowej analizy i archiwizacji wyników pomiarów. Współrzędnościowe maszyny pomiarowe znajdują zastosowanie zarówno w laboratoriach, jak i na halach produkcyjnych. W drugim z przypadków dotyczy to zwłaszcza branży motoryzacyjnej, gdzie technika ta zapewnia kontrolę wymiarową w czasie rzeczywistym.

Spis treści » Istota pomiarów współrzędnościowych
» Głowice pomiarowe
» Głowice bezstykowe
» Pokaż wszystko
Fot.1. Przykładowe części maszyn i urządzeń, które mogą być zmierzone za pomocą WMP

Większość współrzędnościowych maszyn pomiarowych (WMP) nowej generacji jest wyposażonych w głowice pomiarowe, nazywane również sondami skaningowymi. Dzięki nim możliwa jest kontrola nie tylko wymiarów, ale również odchyłek kształtu i położenia skomplikowanych geometrycznie obiektów. Głowice skaningowe, podobnie jak specjalizowane urządzenia do pomiaru kształtu profilu, pozwalają na pomiar dużej liczby punktów w czasie dostosowanym do szybkości produkcji.

Olbrzymie skrócenie czasu łącznej kontroli mierzonego przedmiotu jest możliwe dzięki temu, że nie zachodzi potrzeba zmiany przyrządu pomiarowego – w jednym procesie można wyznaczyć wszystkie możliwe wymiary i odchyłki. Przykładowe części maszyn i urządzeń, które mogą być zmierzone za pomocą WMP, przedstawiono na fot.1. Oprócz pokazanych części o stosunkowo niewielkich wymiarach możliwy jest pomiar dużych elementów – np. karoserii samochodowych (fot.2) o wymiarach do kilku lub kilkunastu metrów.

ISTOTA POMIARÓW WSPÓŁRZĘDNOŚCIOWYCH
Fot.2. Pomiar karoserii samochodu osobowego przy pomocy WMP wysięgnikowej firmy DEA

Pomiary współrzędnościowe charakteryzują się nieco inną zasadą wyznaczania wymiarów geometrycznych od klasycznych metod pomiarowych wykorzystujących przyrządy jednozadaniowe, takie jak mikrometr czy średnicówka. Proces pomiarowy w przypadku WMP polega na pomiarze wartości współrzędnych X, Y, Z pojedynczych punktów na powierzchni mierzonego przedmiotu. W większości klasycznych WMP (z wyjątkiem maszyn hybrydowych i ramion przenośnych) pomiar odbywa się w układzie współrzędnych kartezjańskich, tzn. ruchome zespoły pomiarowe maszyny przemieszczają się w trzech wzajemnie prostopadłych kierunkach.

Do lokalizacji punktów mierzonego przedmiotu w przestrzeni pomiarowej WMP służy głowica pomiarowa, natomiast pomiar ich położenia realizują liniały pomiarowe znajdujące się w każdej z osi maszyny. Na tym etapie wymiary mierzonego przedmiotu oraz odchyłki kształtu i położenia jego elementów nie są jeszcze znane. Niezbędny jest do tego proces obliczeniowy.

Na podstawie zarejestrowanych współrzędnych poszczególnych punktów pomiarowych komputer maszyny wyznacza figury geometryczne, z których składa się element mierzony. Cechy tych figur są wymiarami, a odległości poszczególnych punktów pomiarowych od zdefiniowanych elementów odniesienia to odchyłki kształtu. Wzajemne odległości figur geometrycznych wchodzących w skład mierzonego elementu oraz odchyłki położenia obliczane są również przez oprogramowanie maszyny współrzędnościowej.

WSPÓŁRZĘDNOŚCIOWE MASZYNY POMIAROWE
Rys.1. Schematy kinematyczne WMP portalowej (po lewej) oraz wysięgnikowej (po prawej): (1) zespoły nośne, (2) liniały pomiarowe, (3) głowica, (4) łożyskowanie, (5) stół pomiarowy, (6) głowica obrotowo-uchylna, (7) mierzony element

Pomimo ciągłego postępu w dziedzinie WMP, zasadnicza zmiana w budowie maszyny i jej głównych zespołów (np. stołu pomiarowego, prowadnic, łożyskowania oraz liniałów pomiarowych) nie uległa radykalnym zmianom. Znaczny postęp obserwuje się natomiast w rozwoju głowic pomiarowych oraz kontrolerów i ich oprogramowania. Od lat znane są cztery podstawowe rodzaje rozwiązań konstrukcyjnych maszyn: portalowe (nazywane inaczej bramowymi), mostowe oraz wspornikowe i wysięgnikowe.

Rozwiązania te różnią się przestrzennym usytuowaniem zespołów nośnych maszyny, co przekłada się na ich parametry użytkowe, takie jak zakres pomiarowy i dokładność. Przykładowe schematy kinematyczne dwóch najbardziej popularnych typów maszyn: portalowej i wysięgnikowej, przedstawiono na rys.1. W przypadku najbardziej uniwersalnych maszyn portalowych zakresy pomiarowe sięgają od 400 do 5000mm na oś. Maszyny mostowe charakteryzują się znacznie większymi zakresami sięgającymi nawet 16m.

Rzadko spotykane maszyny wspornikowe ze względu na małą sztywność konstrukcji mają dość małe zakresy od 300 do maksymalnie 700mm. Za to stosowane najczęściej w przemyśle motoryzacyjnym maszyny wysięgnikowe oferują znacznie większe zakresy pomiarowe sięgające w najdłuższej osi do 18m oraz do 3,5m w pozostałych osiach. Dokładność WMP zależy od typu konstrukcji i zastosowanej głowicy pomiarowej. Wynosi ona od kilkudziesięciu µm dla maszyn o dużych zakresach pomiarowych, do dziesiątych części µm dla maszyn portalowych o największej dokładności.

Zdecydowanie największy postęp techniczny w rozwoju WMP obserwowany jest w dziedzinie elektroniki i oprogramowania. Zastosowanie nowoczesnych sterowników i algorytmów pozwala na znaczne poprawienie dokładności pomiaru poprzez numeryczną kompensację różnego typu błędów systematycznych przetworników pomiarowych, a w szczególności błędów dynamicznych. Przykłady takich technologii to Renscan DC w sterownikach UCC firmy Renishaw oraz VAST Navigator w maszynach firmy Zeiss wyposażonych w aktywną głowicę skanującą typu Vast Gold.

Sterownik WMP to centralny element jej wyposażenia zarządzający pozycjonowaniem i skanowaniem. Integruje funkcje kontroli maszyny, głowic pomiarowych oraz przegubów obrotowo-uchylnych i stołów obrotowych. Przykładem takiego sterownika nowej generacji jest UCC firmy Renishaw. Wykorzystuje on technologię Renscan DC, która umożliwia dokładny i szybki pomiar – zarówno impulsowy, jak i poprzez skanowanie (do 500 punktów/s). Renscan DC umożliwia digitalizację powierzchni o nieznanym kształcie.

Fot.3. Widok WMP typu Accura 7 firmy Zeiss

Zastosowany filtr paraboliczny wygładza błędne odchyłki powierzchni powstające wskutek wibracji maszyny. Kontroler udostępnia też funkcje analizy i uczenia się przebiegu nieznanej powierzchni. Z kolei funkcja Dynamic Integrator zapewnia szybkie i dokładne pozycjonowanie oraz zapobiega efektowi przekraczania zadeklarowanej drogi. Sterowniki firmy Hexagon Metrology (B3CLC) mają funkcje Fly, której działanie polega na przewidywaniu przez sterownik w trakcie wykonywania rzeczywistego ruchu maszyny jej kolejnego ruchu.

Pozwala to na płynne sterowanie maszyną bez jej zatrzymywania przy zmianie kierunku jazdy. Przykładem maszyny portalowej średniej klasy jest Accura 7 firmy Zeiss o zakresie pomiarowym od 900 mm w osi X, 1200 mm w osi Y oraz 700 mm w osi Z. Maszyna wyposażona jest w zależności od opcji w skaningową głowicę aktywną typu Vast Gold albo pasywną Vast XXT współpracującą z głowicą obrotowo-uchylną RDS. Możliwe jest również zastosowanie całej gamy innych głowic pomiarowych stykowych, np. impulsowych TP2 i TP200 oraz bezstykowych np. Viscan.

Błąd graniczny wskazania zgodnie z PN-EN ISO10360 wynosi MPEE = 1,7+L/333µm dla głowic skaningowych oraz MPEE = 2,2+L/333µm dla głowic impulsowych współpracujących z przegubem obrotowo-uchylnym RDS. L oznacza mierzoną długość podaną w metrach. Widok maszyny współrzędnościowej typu Accura 7 przedstawiono na fot.3.

OPROGRAMOWANIE POMIAROWE
Rys.2. Widok ekranu przedstawiającego pomiar przekroju elementu o nieznanym kształcie

Oprogramowanie WMP służy do sterowania procesem pomiarowym oraz akwizycji, analizy i archiwizacji wyników. Pierwsze WMP zawierały w większości własne opracowania w tym zakresie. Obecnie, ze względu na fakt, że WMP stały się systemami niezwykle rozbudowanymi, a użytkownicy zwracają szczególną uwagę na funkcjonalność oprogramowania oraz jego komunikatywność, dominuje oprogramowanie uniwersalne. Zaletą takiego stanu rzeczy jest to, że użytkownik przywiązany do określonego oprogramowania nie musi go zmieniać nawet wtedy, gdy wymienia między sobą maszyny różnych producentów.

W Polsce ze względu na popularność WMP firmy Zeiss najbardziej rozpowszechnione jest oprogramowanie Calypso promowane właśnie przez tę firmę. Jest to oprogramowanie uniwersalne, które można stosować również z maszynami innych producentów. Calypso umożliwia wykonanie pomiaru ręcznie za pomocą manipulatora oraz w trybie CNC na podstawie napisanego programu. Obsługuje głowice pomiarowe pracujące stykowo i bezstykowo.

Oprogramowanie automatycznie rozpoznaje mierzone elementy (tj. okrąg, płaszczyzna, prosta, kula, walec, stożek) oraz prezentuje ich trójwymiarowe rysunki w oknach graficznych podobnych do tych z programów wspomagających projektowanie typu CAD/ CAM. Możliwy jest również skaningowy pomiar przekrojów krzywoliniowych o nieznanym kształcie. Widok ekranu przedstawiającego pomiar właśnie takiego przekroju pokazuje rys.2.

Oprócz pakietu Calypso podstawowym oprogramowaniem stosowanym w WMP jest Cosmos Geopak- Win firmy Mitutoyo, PC-DMIS firmy DEA, Quindos firmy Leitz (obecnie obie marki wchodzą w skład Hexagon Metrology), Metrolog firmy Metrologic Group oraz Powerinspect firmy Delcam. Poza wymienionymi programami stosowanymi do kontroli wymiarów, odchyłek kształtu i położenia stosuje się specjalistyczne oprogramowanie dedykowane tylko do jednego typu elementów, np. Blade Pro oraz Gear Pro firmy Zeiss odpowiednio do pomiarów łopatek turbin i kół zębatych.

Tomasz Szymański
Technical Manager
Mitutoyo Polska

     

  • Co zmienia się w technologii współrzędnościowych maszyn pomiarowych (WMP)? Jakie są przykłady nowości wprowadzanych przez Mitutoyo?
  • W konstrukcji WMP zmienia się dosyć dużo, przy czym różni producenci idą w różnych kierunkach. Mitutoyo buduje wyrafinowane lekkie i sztywne konstrukcje w oparciu o metodę elementów skończonych (FEM). Zmieniają się też materiały wykorzystywane w budowie maszyn – np. granit wypierany jest przez nowoczesne stopy metali czy kompozyty.
    Znaczący wpływ na wzrost dokładności ma doskonalenie systemów regulacji szczeliny łożysk pneumatycznych stosowanych w WMP. Kolejnym ważnym, szybko rozwijającym się elementem omawianych maszyn jest oprogramowanie. Mitutoyo co roku publikuje nową wersję programu Mcosmos, która wprowadza m.in. rozwiązania ułatwiające obsługę oraz zwiększające możliwości analizy i prezentacji wyników pomiarów. W przypadku naszej firmy nad rozwojem technik pomiarowych pracuje osiem ośrodków badawczo-rozwojowych wspieranych przez dwanaście instytutów zajmujących się metrologią. Oferujemy szeroką gamę WMP, przy czym najpopularniejsze są maszyny z ruchomym portalem, które występują w wersjach CNC i manualnych.
    Z kolei urządzenia najdokładniejsze to maszyny ze stałym portalem i ruchomym stołem, które zapewniają niepewność pomiaru na poziomie 0,3µm. WMP przystosowane natomiast do pracy w warunkach linii produkcyjnej charakteryzują się odpornością na czynniki zewnętrzne, zwłaszcza w zakresie zmian temperatury i zanieczyszczeń, oraz dużymi szybkościami pracy na poziomie 860mm/s.

  • Kto jest odbiorcą omawianych maszyn?
  • Współrzędnościowe maszyny pomiarowe dzięki ogromnej uniwersalności oprogramowania i różnorodności wyposażenia pracują praktycznie w większości branż. Oceniam, że odpowiednio wyposażona WMP znaleźć może zastosowanie wszędzie tam, gdzie zachodzi potrzeba sprawdzenia, czy produkt odpowiada założonemu przez konstruktora kształtowi. Dotyczy to aplikacji począwszy od motoryzacji, przez przemysł lotniczy, elektronikę, ADG, przemysł medyczny po nanotechnologię – wszędzie tam również Mitutoyo może służyć adekwatnymi rozwiązaniami.



 

zobacz wszystkie Nowe produkty

Stałoprądowe zasilacze 300-600 W EVS do systemów magazynowania energii

2016-09-28   |
Stałoprądowe zasilacze 300-600 W EVS do systemów magazynowania energii

Stałoprądowe zasilacze nowej serii EVS zostały zaprojektowane do zastosowań w systemach magazynowania energii i innych wymagających zasilania stałym prądem, np. oczyszczania wody czy powlekania galwanicznego. W zależności od wersji mogą być chłodzone przez naturalny obieg powietrza (wersje 300 W) lub za pomocą wbudowanego wentylatora (wersje 600 W).
czytaj więcej

Huby USB do zastosowań przemysłowych

2016-09-28   | Conrad Electronic Sp. z o.o.
Huby USB do zastosowań przemysłowych

Conrad Business Supplies wprowadził do oferty nowe huby (rozdzielacze) USB 2.0 marki renkforce. Urządzenia z czterema lub siedmioma portami są przeznaczone do zastosowań przemysłowych i innych, gdzie wymagana jest wysoka stabilność mechaniczna oraz bezpieczeństwo instalacji.
czytaj więcej

Nowy numer APA