Bezpieczeństwo pomiarów elektrycznych

Wybór urządzenia pomiarowego rozpatrywany pod kątem bezpieczeństwa porównywany jest często do wyboru kasku przez motocyklistę. Na pierwszy rzut oka rozważane dwa kaski różnią się przede wszystkim ceną, a ich kształt i wygląd zewnętrzny jest do złudzenia podobny. Jednak to, co najważniejsze dla bezpieczeństwa motocyklisty znajduje się pod błyszczącą skorupą kasku - specjalnie uformowane i wytrzymałe wypełnienie pochłaniające siłę uderzenia warunkuje cenę produktu. W ten sam sposób możemy porównać urządzenia służące do pomiarów elektrycznych.

Posłuchaj
00:00

Z pozoru wyglądające niemalże identycznie multimetry mogą istotnie różnić się pod względem zastosowanych wewnątrz urządzenia rozwiązań, zapewniających bezpieczeństwo osobie dokonującego pomiaru - stąd też bierze się różnica w cenie pomiędzy przyrządami.

Rys. 1. Kategorie bezpieczeństwa w zależności od odległości od punktu zdawczoodbiorczego PP 4543

Opis kategorii bezpieczeństwa

IEC (International Electrotechnical Commission, Międzynarodowa Komisja Elektrotechniczna) opracowuje międzynarodowe normy ogólne dotyczące bezpieczeństwa urządzeń elektrycznych używanych do pomiarów, kontroli i w laboratoriach. Norma IEC61010-1 posłużyła do opracowania następujących norm krajowych:

  • Stany Zjednoczone ANSI/ ISAS82.01-94,
  • Kanada CAN C22.2 No. 1010.1-92,
  • Europa EN61010-1:2001.

KATEGORIE PRZEPIĘCIOWE INSTALACJI

Rys. 2.

Norma IEC61010-1 określa kategorie przepięciowe instalacji w oparciu o odległość urządzenia od źródła zasilania (rys. 1 i tabela) oraz naturalne tłumienie stanów nieustalonych występujące w systemach dystrybucji energii elektrycznej. Kategorie wyższe znajdują się bliżej źródła zasilania i wymagają lepszej ochrony.

W obrębie każdej kategorii wyróżnia się poszczególne klasy napięciowe. To właśnie kombinacja kategorii instalacji i klasy napięciowej określa maksymalną odporność urządzenia na stany nieustalone. Procedury prób zgodnie z normą IEC 61010 uwzględniają trzy główne kryteria: napięcie w stanie ustalonym, napięcie w stanie nieustalonym piku impulsu oraz impedancja źródła. Wyłącznie zsumowanie tych kryteriów pozwala określić prawdziwą wartość wytrzymałości na napięcia.

Międzynarodowa Komisja Elektrotechniczna opracowuje i proponuje standardy, lecz nie jest odpowiedzialna za ich wdrażanie. W związku z powyższym producenci urządzeń pomiarowych posiłkują się wsparciem niezależnych laboratoriów testujących, takich jak UL, CSA, VDE, TÜV lub innego znanego podmiotu certyfikującego. Pozytywna akredytacja laboratorium testującego pozwala na wykorzystanie znaku jakości, który zazwyczaj umieszczany jest na pokrywie baterii mierników (rys. 2).

PRZEWODY POMIAROWE

Fot. 1. Sondy pomiarowe TL175 TwistGuard (PP 21015)

Poza kategorią bezpieczeństwa samego przyrządu pomiarowego warto zwrócić uwagę na przewody pomiarowe. Należy używać przewodów pomiarowych, które mają co najmniej tę samą lub wyższą kategorię bezpieczeństwa niż miernik. Ponadto warto zwrócić uwagę czy wykorzystywane przez nas sądy mają poniższe cechy:

  • osłonięte złącza,
  • osłony na palce i powłokę antypoślizgową,
  • podwójną izolację,
  • minimalną długość nieosłoniętego metalu na końcówkach przewodów.

Powyższe wymagania w pełni spełnione są przez sondy TL175 TwistGuard (fot. 1). W sondach tych wykorzystano opatentowaną rozszerzaną osłonę końcówki, która spełnia nowe wymagania względem bezpieczeństwa wymagające skrócenia odkrycia końcówki, jednocześnie zapewniając elastyczność potrzebną dla większości pomiarów.

Długość odkrycia końcówki sondy można zmieniać od 19 do 4 mm. Każdy z przewodów jest pokryty dwiema warstwami silikonowej izolacji. Wyraźny kolor wewnętrznej staje się widoczny, gdy przewód zostanie wyszczerbiony, przetarty lub uszkodzony w inny sposób i będzie wymagał wymiany.

Przed przystąpieniem do pomiarów elektrycznych warto również samemu sprawdzić bezpieczeństwo sond poprzez pomiar rezystancji. Sprawne i bezpieczne przewody pomiarowe będą miały rezystancję od 0,1 do 0,3 Ω.

Fluke
www.fluke.pl

Zobacz więcej w kategorii: Prezentacje firmowe
Silniki i napędy
Fabryka Grupy Roca oszczędza 30% energii rocznie dzięki technologiom napędowym
Pomiary
Ciśnienie pod kontrolą – nowoczesne rozwiązania dla sektora spożywczego
Obudowy, złącza, komponenty
Nowa generacja zaworów 2-drogowych do wbudowania LC_8X/ zwiększa wydajność i efektywność hydraulicznych zaworów logicznych
PLC, HMI, Oprogramowanie
Zintegrowane technologie dla przemysłu spożywczego - precyzja, kontrola, niezawodność
PLC, HMI, Oprogramowanie
Jak efektywnie wdrażać Edge AI?
Przemysł 4.0
Nowe standardy w przemyśle spożywczym, farmaceutycznym i medycznym
Powiązane treści
Nowe normy bezpieczeństwa dla robotów współpracujących
Jak poprawić bezpieczeństwo pracowników?
Zobacz więcej z tagiem: Artykuły
Magazyn
Kwiecień 2025
Rynek
Nie tylko technologie
Rynek
Produkcja przemysłowa

Poradnik doboru rozwiązań drukujących - drukarki mobilne, stacjonarne i przemysłowe

Jak dobrać drukarkę do zastosowań w logistyce, przemyśle czy handlu? Na co zwrócić uwagę, jeżeli chodzi o cechy i funkcje urządzenia? Jak zapewnić wysoką niezawodność pracy oraz trwałość systemu drukującego? A co z oprogramowaniem? W artykule odpowiadamy na powyższe pytania, przedstawiając przykłady nowoczesnych urządzeń drukujących, które z powodzeniem sprawdzają się w wymienionych zastosowaniach.
Zapytania ofertowe
Unikalny branżowy system komunikacji B2B Znajdź produkty i usługi, których potrzebujesz Katalog ponad 7000 firm i 60 tys. produktów