CZĘŚĆ 2: SPRAWNOŚĆ SILNIKÓW I SYSTEMÓW NAPĘDOWYCH
W drugiej części artykułu omawiamy techniczne aspekty zagadnień związanych z energooszczędnością silników. W szczególności przedstawiamy opis konstrukcji silników oraz układów napędowych, wskazując na miejsca występowania w nich strat energii.
STRATY ENERGII W SILNIKACH ELEKTRYCZNYCH
Sprawność energetyczną silników elektrycznych można zwiększyć przede wszystkim, ograniczając straty energii, która zamieniana jest na ciepło. W czasie pracy silnika przemiana taka zachodzi zarówno w wirniku i w stojanie, jak i w dodatkowych elementach. Straty ogólnie podzielić można na cztery grupy: straty w uzwojeniu (tzw. straty w miedzi lub inaczej - obciążeniowe), w rdzeniu (tzw. straty w stali), straty mechaniczne (tarcia) oraz straty dodatkowe.
Straty obciążeniowe występują w uzwojeniach wirnika i stojana. W wyniku przepływu prądu w postaci ciepła wydziela się moc strat proporcjonalna do kwadratu natężenia prądu i rezystancji przewodnika. Straty w uzwojeniach zmieniają się w zależności od obciążenia silnika oraz w wyniku zmiany rezystancji. To ostatnie zachodzi m.in. na skutek wahań temperatury otoczenia.
Zmianę rezystancji ΔR można w takim wypadku wyznaczyć ze wzoru ΔR=α·(R·ΔT), gdzie: α to temperaturowy współczynnik rezystancyjny przewodnika, R - rezystancja w temperaturze odniesienia, a ΔT - zmiana temperatury. W przypadku uzwojenia miedzianego przyrost temperatury o każde 10°C oznacza zwiększenie się jego rezystancji o 4%. Na wzrost rezystancji uzwojeń w maszynach indukcyjnych wpływ ma także zjawisko naskórkowości oraz tzw. efekt sąsiedztwa.
Pierwszy polega na zagęszczaniu się prądu przy powierzchni przewodnika wraz ze wzrostem częstotliwości. Efekt sąsiedztwa jest z kolei skutkiem wzajemnego oddziaływania na siebie pól w otoczeniu sąsiadujących ze sobą przewodników i również objawia się zmianami gęstości prądu. Szacuje się, że łącznie straty obciążeniowe w uzwojeniach wirnika i stojana stanowią około 50% wszystkich strat energii w silniku.
STRATY W STALI, TARCIA I DODATKOWE
Straty w stali występują w obwodzie magnetycznym silnika, który stanowią rdzeń stojana i wirnika. Dzieli się je na tzw. straty na histerezę oraz straty na prądy wirowe. Te pierwsze wynikają ze strat energii potrzebnej do zmiany położenia domen w materiale magnetycznym w czasie jego okresowego przemagnesowywania, co następuje zgodnie z krzywą pętli histerezy. Niezależnie od strat histerezowych występują straty cieplne spowodowane występowaniem prądów wirowych indukowanych w rdzeniach przez pole magnetyczne.
Razem wnoszą około 15-procentowy wkład w całkowite straty energii w silniku. Przyczyną strat mechanicznych jest z kolei tarcie, które występuje przede wszystkim w łożyskach. Energia tracona jest także na skutek oporu aerodynamicznego, który napotykają części wirujące silnika - wirnik oraz łopatki zintegrowanego z wirnikiem wentylatora chłodzącego silnik. Straty na tarcie stanowią również około 15% wszystkich strat energii w silniku.
Oprócz opisanych czynników na sprawność silnika wpływ mają też tzw. straty dodatkowe powstające przede wszystkim na skutek harmonicznych pola magnetycznego w obrębie szczeliny powietrznej między stojanem i wirnikiem.
Ich przyczyną jest głównie nierównomierna grubość tej szczeliny spowodowana sposobem rozmieszczenia żłobków wirnika i stojana, rozbieżnościami w zakresie ich wymiarów oraz samym sposobem ułożenia uzwojeń w tych żłobkach. Niedokładności te są wynikiem zaniedbań na etapach projektowania oraz produkcji elementów stojana i wirnika. Straty dodatkowe stanowią z reguły około 20% wszystkich strat energii w silniku.
JAK ZBUDOWAĆ ENERGOOSZCZĘDNY SILNIK?
Z opisu głównych przyczyn strat energii w silnikach wynika, że w celu ograniczania ilości generowanego ciepła należy zmodyfikować ich konstrukcję. Zmiany wprowadzane w tym celu w energooszczędnych silnikach można podzielić na trzy grupy. Pierwsza obejmuje przeprojektowanie komponentów silnika, w tym głównie zmiany ich wymiarów.
Oddzielnym zadaniem jest zapewnienie większej precyzji w zakresie wykonania poszczególnych elementów. Trzecia zmiana dotyczy z kolei wykorzystania do produkcji komponentów silnika materiałów o wyższej jakości i lepszych parametrach, co obejmuje m.in. zwiększanie ilości materiałów czynnych, głównie miedzi. Aby przykładowo ograniczyć straty obciążeniowe, dąży się do zmniejszenia rezystancji uzwojeń.
W tym celu zwiększa się pole przekroju poprzecznego uzwojeń stojana oraz stosuje grubsze uzwojenia wirnika. Dodatkowo w ostatnim przypadku często zastępuje się aluminium miedzią. Grubsze uzwojenia sprawiają, że konieczne staje się zwiększenie rozmiarów żłobków, co czyni się kosztem powierzchni rdzeni wirnika i stojana. Należy to uwzględnić w projekcie, odpowiednio zwiększając rozmiar tych ostatnich.
Ponadto aby minimalizować straty miedzi, w przypadku stojana zmniejsza się też długość czołowych połączeń uzwojeń. Straty w rdzeniu można zmniejszyć, stosując do jego produkcji blachy wyższej jakości, które - jak na przykład stal magnetyczna - charakteryzują się mniejszymi stratami w procesie przemagnesowywania. Straty na ciepło wywoływane występowaniem prądów wirowych ogranicza się z kolei, zmniejszając grubość blach rdzeni. W celu zminimalizowania strat dodatkowych należy natomiast z większą precyzją wykonać żłobki.
Jednocześnie tak dobiera się ich wymiary, aby uzyskać odpowiednią grubość szczeliny powietrznej między wirnikiem i stojanem również zoptymalizowaną pod kątem tych strat. Ograniczenie strat mechanicznych uzyskuje się przede wszystkim, instalując łożyska, których konstrukcję (wymiary oraz materiały, z których zostały wykonane) opracowano w taki sposób, aby straty na ciepło w wyniku tarcia były możliwie najmniejsze.
To ostatnie dodatkowo ogranicza się, stosując specjalne smary. Ponadto instaluje się mniejsze wentylatory oraz projektuje wnętrze silnika, zapewniając jak największy swobodny przepływ powietrza w jego obrębie. Opisane innowacje nie tylko zwiększają sprawność energetyczną silników zaliczanych do grupy tych energooszczędnych, ale również poprawiają ich parametry eksploatacyjne w porównaniu do maszyn w wykonaniu standardowym. Na przykład dzięki temu, że nowe silniki generują mniej ciepła oraz charakteryzują się mniejszymi drganiami, ich niezawodność jest większa i pracują one ciszej.
Tabliczki znamionowe - co nowego?Tabliczki znamionowe silników o klasie sprawności IE2 muszą zawierać:
|