CZĘŚĆ 3. AUTOMATYKA W METRZE
Automatyzacja zadania kierowania metrem ma wiele zalet. Przede wszystkim, ograniczając wpływ czynnika ludzkiego, zmniejsza się ryzyko popełnienia błędu w prowadzeniu pociągu, na przykład z powodu nieuwagi lub zmęczenia kierującego. Ponadto automatyzacja niektórych zadań skraca czas podróży tym środkiem transportu. Można również zaoszczędzić sporo energii, dzięki optymalizacji pod tym kątem etapów przyspieszania i hamowania składu.
Metro można zautomatyzować na kilku poziomach (Grade of Automation, GoA). Zestandaryzowano je w normie IEC 62267 Railway applications - Automated urban guided transport - Safety requirements.
JAK ZAPOBIEC KOLIZJI?
Poziom zerowy opisuje sytuację, w której maszynista prowadzi i obsługuje pojazd, m.in. otwiera i zamyka jego drzwi, samodzielnie, w oparciu wyłącznie o własną obserwację sytuacji na linii i w pociągu oraz sygnalizację przytorową. Poziom pierwszy (GoA 1) oznacza z kolei, że kierujący prowadzi i hamuje pociąg ręcznie, jego działania nadzoruje jednak system ATP (Automatic Train Protection). Zapewnia on podstawowe bezpieczeństwo, zapobiegając kolizjom i nie dopuszczając do: ignorowania przez kierującego sygnałów ostrzegawczych i przekraczania dopuszczalnej prędkości, dzięki uruchomieniu w razie potrzeby automatycznego hamowania.
Kolizjom na linii metra zapobiega się, dbając o to, aby pomiędzy pojazdami poruszającymi się po tym samym torze zachowana była odpowiednia przerwa. Zapewnia się to przez niedopuszczenie, żeby na określonym odcinku toru, odstępie blokowym, w danej chwili znajdował się więcej niż jeden skład. Dzięki temu w przypadku, gdy dojdzie do gwałtownego hamowania jednego z nich, drugi zatrzyma się w bezpiecznej odległości.
JAKA PRĘDKOŚĆ JEST BEZPIECZNA?
Rolą systemu ATP jest wyznaczenie prędkości, która dla danego pociągu, na danym odstępie blokowym, w określonej sytuacji na trasie, będzie bezpieczna. Jest ona stale porównywana z szybkością, z jaką aktualnie porusza się skład. Jeżeli ta druga jest mniejsza, metrem kieruje maszynista. W przeciwnym wypadku system ATP wyłącza napęd pociągu i włącza układ hamulcowy.
Za prędkość bezpieczną z reguły uważa się najmniejszą spośród trzech wielkości. Pierwszą z nich jest szybkość dopuszczalna, stała dla danego odstępu blokowego, która zależy m.in. od specyfiki tego odcinku toru, na przykład jego zakrzywienia. Drugą wielkością jest prędkość dozwolona. Ta jest z kolei zależna od sytuacji na linii, tzn. jej obciążenia. Uwzględnia się również osiągi pociągu (jego prędkość konstrukcyjną) oraz opóźnienie hamowania.
W stopniu GoA 2 maszynista jest wspomagany przez automatyczne systemy ATP i ATO (Automatic Train Operation), które razem tworzą system ATC (Automatic Train Control). Oznacza to, że jego rola ogranicza się do uruchomienia pojazdu i zamknięcia jego drzwi. Za przejazd między stacjami, zatrzymanie pociągu i otwarcie jego drzwi odpowiada system ATO. Kierujący może ewentualnie ingerować w sytuacji awaryjnej.
JAKIE SYSTEMY ZASTĘPUJĄ MASZYNISTĘ?
Poziom GoA 3 (Driverless Train Operation, DTO) oznacza z kolei, że pociąg jest sterowany, a jego ruch nadzorowany, automatycznie, bez udziału człowieka. Zautomatyzowany jest zatem: rozruch, przejazd między stacjami, hamowanie oraz otwieranie drzwi. Maszynista może zamykać drzwi i interweniować w sytuacji awaryjnej. W stopniu GoA 4 (Unattended Train Operation, UTO) wszystkie zadania są zautomatyzowane, a na pokładzie nie ma maszynistów.
Maszynistę na pokładzie metra UTO zastępuje system ATO, który jest nadzorowany przez system ATP. Komputery przytorowe komunikują się z kolei z systemami zarządzania ruchem na wyższych poziomach.
W metrze UTO wdraża się system CBTC (Communication Based Train Control). Wykorzystuje się w nim dwukierunkową transmisję informacji pomiędzy pociągiem a przytorowymi komputerami sterującymi (radiową lub przy użyciu pętli indukcyjnej ułożonej wzdłuż toru). Pierwszy wysyła informacje o swoim aktualnym położeniu, prędkości i kierunku, w jakim się przemieszcza, a drugi odbiera sygnały sterujące. Pozwala to na prowadzenie ruchu w oparciu o tzw. ruchome odstępy blokowe.
STAŁE ODSTĘPY BLOKOWE VS. RUCHOME
W przypadku stałych odstępów blokowych trasa zostaje podzielona na odcinki o niezmiennych długościach, których początek oraz koniec wyznaczają semafory. Kiedy jeden skład wjeżdża na wydzielony fragment toru, stan sygnalizacji zmienia się w taki sposób, aby odseparować go od składu jadącego z tyłu.
Ponownie zmienia się on, umożliwiając wjazd temu drugiemu, kiedy pierwszy znajdzie się na kolejnym odstępie blokowym. Wymóg zachowania pomiędzy składami zawsze jednego wolnego odstępu blokowego o stałej długości sprawia, że możliwości skrócenia czasu następstwa (headway), od którego zależy częstotliwość kursowania pociągów, są ograniczone.
W przypadku odstępów o zmiennej długości na bezpieczną odległość między składami jadącymi jeden po drugim składa się długość drogi hamowania i marginesu bezpieczeństwa. Pierwsza z nich jest co jakiś czas aktualizowana przez system nadrzędny i na bieżąco przesyłana do urządzeń pokładowych. Dzięki temu kolejny pociąg nie musi się już zatrzymywać na granicy bloków, obydwa składy są zatem w ciągłym ruchu. Pozwala to bardziej skrócić czas następstwa.
Monika Jaworowska