ROZPORZĄDZENIE WDRAŻAJĄCE DYREKTYWĘ W SPRAWIE EKOPROJEKTU
W rozporządzeniu nr 4/2014 zmieniono wartości: wysokości bezwzględnej, maksymalnych oraz minimalnych temperatur otoczenia i temperatur wody chłodzącej, po przekroczeniu których uznaje się, że silnik pracuje w warunkach ekstremalnych i musi w rezultacie mieć specjalną konstrukcję. Obecnie zatem jego zapisy nie stosują się do silników:
- przeznaczonych do eksploatacji przy pełnym zanurzeniu w cieczy (bez zmian),
- stanowiących integralną część produktu (przekładni zębatej, pompy, wentylatora, sprężarki, itp.), których charakterystyka energetyczna nie może być sprawdzona niezależnie od niego (bez zmian),
- silników hamujących (bez zmian),
- silników przeznaczonych do eksploatacji wyłącznie:
- na wysokościach powyżej 4000 m n.p.m. (wcześniej: 1000 m n.p.m.),
- w temperaturze otoczenia przekraczającej +60°C (wcześniej: +40°C),
- w maksymalnej temperaturze roboczej powyżej +400°C (bez zmian),
- w temperaturze otoczenia poniżej -30°C w odniesieniu do wszystkich silników albo poniżej 0°C w przypadku silników chłodzonych wodą (wcześniej: w temperaturze otoczenia poniżej -15°C dla wszystkich silników albo poniżej 0°C dla silników chłodzonych powietrzem),
- w przypadku, gdy temperatura wody chłodzącej na wejściu do produktu wynosi mniej niż 0°C lub więcej niż +32°C (wcześniej odpowiednio: +5°C i +25°C),
- w przestrzeniach zagrożonych wybuchem zgodnie z definicją z dyrektywy 94/9/WE.
GDZIE UMIEŚCIĆ INFORMACJE O SPRAWNOŚCI SILNIKA?
Od 2011 roku informacja o sprawności silnika powinna być dostępna z kilku źródeł. Są to:
- techniczna dokumentacja silnika,
- techniczna dokumentacja urządzenia, którego częścią jest dany silnik,
- ogólnodostępne strony internetowe producenta silnika,
- ogólnodostępne strony internetowe producenta urządzenia, którego częścią jest dany silnik.
Informacje te muszą być widoczne, łatwo rozpoznawalne i przedstawione w taki sposób, aby były zrozumiałe dla użytkowników końcowych i organów nadzorujących zgodność z przepisami. W dokumentacji technicznej należy zachować ich określoną kolejność, którą przedstawiamy w ramce. Sposób ich wyrażenia jest natomiast dowolny. Można je przedstawić w postaci napisu, graficznie albo za pomocą symboli.
Jeżeli coś jest niejasne, zajrzyj do FAQNa stronie internetowej Komisji Europejskiej poświęconej tematowi oszczędności energii ( Oddzielnym zadaniem jest zapewnienie większej precyzji w zakresie wykonania poszczególnych elementów. Trzecia zmiana dotyczy z kolei wykorzystania do produkcji komponentów silnika materiałów o wyższej jakości i lepszych parametrach, co obejmuje m.in. zwiększanie ilości materiałów czynnych, głównie miedzi. Aby przykładowo ograniczyć straty obciążeniowe, dąży się do zmniejszenia rezystancji uzwojeń. W tym celu zwiększa się pole przekroju poprzecznego uzwojeń stojana oraz stosuje grubsze uzwojenia wirnika. Dodatkowo w ostatnim przypadku często zastępuje się aluminium miedzią. Grubsze uzwojenia sprawiają, że konieczne staje się zwiększenie rozmiarów żłobków, co czyni się kosztem powierzchni rdzeni wirnika i stojana. Należy to uwzględnić w projekcie, odpowiednio zwiększając rozmiar tych ostatnich. Ponadto, aby minimalizować straty miedzi, w przypadku stojana zmniejsza się również długość czołowych połączeń uzwojeń. Straty w rdzeniu można zmniejszyć, stosując do jego produkcji blachy wyższej jakości, które - jak na przykład stal magnetyczna - charakteryzują się mniejszymi stratami w procesie przemagnesowywania.
PRZY OKAZJI POPRAWIA SIĘ PARAMETRY UŻYTKOWEStraty na ciepło wywoływane występowaniem prądów wirowych ogranicza się z kolei, zmniejszając grubość blach rdzeni. W celu zminimalizowania strat dodatkowych należy natomiast z większą precyzją wykonać żłobki. Jednocześnie tak dobiera się ich wymiary, aby uzyskać odpowiednią grubość szczeliny powietrznej między wirnikiem i stojanem również zoptymalizowaną pod kątem tych strat. Ograniczenie strat mechanicznych uzyskuje się przede wszystkim, instalując łożyska, których konstrukcję (wymiary oraz materiały, z których zostały wykonane) opracowano w taki sposób, aby straty na ciepło w wyniku tarcia były możliwie najmniejsze. To ostatnie dodatkowo ogranicza się, stosując specjalne smary. Ponadto instaluje się mniejsze wentylatory oraz projektuje wnętrze silnika, zapewniając jak największy swobodny przepływ powietrza w jego obrębie. Opisane rozwiązania nie tylko zwiększają sprawność energetyczną silników zaliczanych do grupy tych energooszczędnych, ale również poprawiają ich parametry eksploatacyjne w porównaniu do maszyn w wykonaniu standardowym. Na przykład dzięki temu, że nowe silniki generują mniej ciepła oraz charakteryzują się mniejszymi drganiami, ich niezawodność jest większa i pracują one ciszej. SILNIKI PM I LSPMPrzedstawione metody poprawy sprawności są stosowane głównie w silnikach klasy IE2 i IE3. Jeżeli chodzi o urządzenia o najwyższej sprawności super premium, tj. klasy IE4, są to przede wszystkim silniki typu PM (Permanent Magnet), czyli z magnesami trwałymi. Silniki te są maszynami synchronicznymi, tzn. że nie ma poślizgu pomiędzy wirującymi polami wirnika i stojana, jak w trójfazowych silnikach indukcyjnych. W przeciwieństwie do nich silniki PM nie mają uzwojeń wirnika. Zastępuje się je magnesami trwałymi umieszczanymi w głębi albo na powierzchni wirnika. W ten sposób eliminuje się straty w tej części silnika. Silniki PM charakteryzuje znacznie większa sprawność niż silniki indukcyjne w czasie pracy z mniejszą prędkością. W porównaniu do tych o podobnej sprawności mogą być z kolei mniejsze. Ponieważ do produkcji magnesów trwałych potrzebne są pierwiastki ziem rzadkich, silniki tego rodzaju są niestety droższe. Ich wadą jest oprócz tego konieczność użycia sterownika. Wysoka temperatura oraz duże natężenie prądu sprzyjają ich rozmagnesowaniu. Silne magnesy w wirniku utrudniają jego demontaż i wymuszają użycie specjalnych narzędzi. To z kolei utrudnia serwis tych maszyn. Alternatywą są silniki typu LSPM (Line Start Permanent Magnet), czyli z magnesami trwałymi o rozruchu bezpośrednim. Stanowią one połączenie trójfazowego silnika indukcyjnego i silnika PM - mają wirnik klatkowy oraz magnesy wbudowane pod klatką. Uzwojenie tej ostatniej jest aktywne w czasie rozruchu. Po rozpędzeniu silnik pracuje synchronicznie. Co prawda konstrukcja tych maszyn jest złożona, przez co są droższe, jednak nie wymagają sterownika. Silniki typu LSPM ma w swojej ofercie m.in. firma SEW Eurodrive. Przykładem jest seria DRU..J cechująca się klasą sprawności IE4 i zakresem mocy od 0,18 do 3 kW, w rozmiarach od 71S do 100L (patrz ramka) . Monika Jaworowska Przy tworzeniu artykułu korzystano m.in. z materiałów Komisji Europejskiej. Rozmowa z Magdaleną Muszyńską z Emerson Industrial Automation
Świadomość zmian rośnie, gdyż dyrektywa ErP obowiązuje od 2011 roku, aktualnie jest rozszerzana do silników mniejszej mocy. Należy zaznaczyć, że dyrektywa nakłada obowiązek na producentów silników, nie użytkowników. Ci ostatni, jakkolwiek nie są obligowani przepisami prawa, są i będą obligowani przez rzeczywistość rynkową i brak dostępności na rynku silników o niższych klasach sprawności. Wśród użytkowników rośnie przede wszystkim świadomość korzyści z użytkowania silników wysoko sprawnych. Korzyści te mają wymiar przede wszystkim finansowy w postaci niższych opłat za energię elektryczną, ale również ekologiczny - coraz więcej przedsiębiorstw ma w swoich celach wskaźnik emisji CO2.
To zależy, o jakiej perspektywie czasowej mówimy. Jeśli weźmiemy pod uwagę przeciętny całkowity koszt użytkowania silnika elektrycznego przez 10 lat, to koszt zakupu wyniesie zaledwie 2% całkowitych kosztów, 3% to koszty serwisowe, zaś koszt energii elektrycznej to ponad 90% całkowitych kosztów użytkowania! Perspektywa 10 lat jest perspektywą użytkownika. Podobnie argument dotyczący kosztów użytkowania będzie trafiał głównie do użytkowników.
Nowe uregulowania wyeliminowały tę lukę i silniki o podwyższonej temperaturze są objęte regulacją, chyba że zostały zaprojektowane w sposób specjalny do pracy w temperaturach powyżej 60°C. Oczywiście każde przepisy można obejść. Uważam jednak, że logika rynkowa oraz korzyści płynące z oszczędzania energii to główne czynniki, które wyeliminują obecność "starszych" silników. Sprostanie wymogom nowych norm zmusiło producentów do dużych inwestycji w obszarze R&D oraz środków produkcji. Na dłuższą metę nikt nie będzie utrzymywał podwójnej produkcji "starych" i nowych silników, bo jest to zbyt kosztowne. Zatem "stare" silniki po prostu przestaną być dostępne na rynku.
Nie można w nieskończoność zwiększać klas sprawności silników indukcyjnych. Silniki dużej mocy, a więc te najbardziej energochłonne, osiągają dziś bardzo wysoką sprawność 96%. Sprawność silnika czy zespołu napędowego niekoniecznie jest kluczowym elementem wydajności urządzenia. Straty powstają często w części mechanicznej i tam może być potencjał do oszczędności. Prawdopodobnie zmiany przepisów będą iść w kierunku sprawności całych urządzeń.
Sprawność samego silnika to tylko jeden z elementów, wcale nie jest on najważniejszy dla optymalizacji efektywności całego układu napędowego. W zależności od aplikacji istnieją różne inne możliwości optymalizacji. W aplikacjach o zmiennym obciążeniu na pewno źródłem oszczędności będzie przemiennik częstotliwości w połączeniu z silnikiem synchronicznym. Silniki synchroniczne z magnesami stałymi mają znacznie wyższą sprawność w całym zakresie regulacji prędkości w stosunku do silników indukcyjnych i, w zależności od profilu obciążenia, możemy uzyskać na nich około 6% oszczędności w stosunku do silnika indukcyjnego. Kluczowe dla efektywności jest właściwe zaprojektowanie pracy całego układu z odpowiednią regulacją wydajności, często przy zastosowaniu nadrzędnych systemów sterowania.
Zbigniew Piątek
Spis treści
Powiązane treści
![]()
Teco uruchomił pierwszą na świecie inteligentną fabrykę silników
![]()
Energooszczędne silniki BLDC w ofercie WObit
![]()
Zalety silników Lenze o częstotliwości znamionowej 120 Hz
![]()
Silniki klasy Super Premium również w ofercie EURA Drives
![]()
Jak podnieść sprawność energetyczną maszyny, linii technologicznej i zakładu?
![]()
Zwiększanie efektywności energetycznej układów napędowych
![]()
Symulacja pracy układu napędowego z OrCAD PSpice
![]()
Energooszczędne rozwiązania effiDRIVE firmy SEW-Eurodrive
![]()
Jakie ważne kryteria doboru napędów elektrycznych zaleca dyrektywa Ecodesign?
![]()
ABC bezpiecznych napędów - profesjonalny serwis silników i motoreduktorów
![]()
Gięte prowadnice liniowe firmy igus - bezpieczne prowadzenie przy zmiennych promieniach
![]()
Katalog z napędami i silnikami niewielkich mocy
![]()
Wydajne silniki mogą znacząco obniżyć globalne zużycie energii elektrycznej
![]()
Danfoss liderem w produkcji silników hydraulicznych
![]()
Inteligentne rozwiązanie dla układów napędowych. Uniwersalne sterowniki silników UMC100.3 produkcji ABB
![]()
Rynek zabezpieczeń silników rośnie
![]()
Silniki energooszczędne - czyli jak być zgodnym z przepisami od stycznia 2015 roku
Zobacz więcej w kategorii: Temat miesiąca
![]()
Przemysł 4.0
Sztuczna inteligencja i cyfrowy przemysł
![]()
Artykuły
Wod-kan, uzdatnianie wody i oczyszczanie ścieków
![]()
Roboty
Produkcja spożywcza, farmaceutyczna i medyczna - nowe technologie i wysoka czystość
![]()
Komunikacja
Szkolenia w przemyśle
![]()
Silniki i napędy
Kompendium serwonapędów i Motion Control
![]()
Artykuły
Oil&gas i sektor chemiczny - automatyka i pomiary w branżach procesowych
Zobacz więcej z tagiem: Artykuły
Cała branża automatyki. Twoje pytania.
Poszukuję produktu lub usługi
Chcę skontaktować się z firmą
Mam pytanie ogólne
Zapytania ofertowe
Unikalny branżowy system komunikacji B2B
Znajdź produkty i usługi, których potrzebujesz
Katalog ponad 7000 firm i 60 tys. produktów
|